a2 United States Patent

Yamada et al.

US009348594B2

US 9,348,594 B2
May 24, 2016

(10) Patent No.:
(45) Date of Patent:

(54) CORE SWITCHING ACCELERATION IN
ASYMMETRIC MULTTIPROCESSOR SYSTEM

(75) Inventors: Koichi Yamada, Santa Clara, CA (US);
Boris Ginzburg, Haifa (IL); Wei Li,
Palo Alto, CA (US); Ronny Ronen,
Haifa (IL); Esfir Natanzon, Haifa (IL);
Konstantin Levit-Gurevich,
Kiryat-Bialik (IL); Gadi Haber, Nesher
(IL); Alon Naveh, Ramat Hasharon (IL);
Eliezer Weissmann, Haifa (IL); Michael
Mishaeli, Zikhron Yaakov (IL)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 366 days.

(21) Appl. No.: 13/992,710

(22) PCT Filed: Dec. 29,2011

(86) PCT No.: PCT/US2011/067851
§371 (),
(2), (4) Date: Jun. 7,2013

(87) PCT Pub. No.: 'WO02013/101069

PCT Pub. Date: Jul. 4, 2013

(65) Prior Publication Data
US 2013/0268742 Al Oct. 10, 2013
(51) Imt.ClL
GOG6F 9/40 (2006.01)
GO6F 9/30 (2006.01)
GO6F 9/50 (2006.01)
(52) US.CL
CPC GO6F 9/30181 (2013.01); GOGF 9/5044

(2013.01); GOGF 9/5094 (2013.01); YO2B
60/142 (2013.01)

(58) Field of Classification Search
CPC .ottt GOG6F 12/0862
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,730,470 B2 6/2010 Sharapov et al.
7,734,895 Bl 6/2010 Agarwal et al.
8,181,054 B2 5/2012 Terechko et al.
8,549,200 B2 10/2013 Nakahashi et al.
8,745,621 B2* 6/2014 Yang GOGF 9/45558
718/1
9,158,355 B2* 10/2015 Sutardja GO6F 1/3203
2007/0050555 Al 3/2007 Ferren et al.
(Continued)
OTHER PUBLICATIONS

PCT International Search Report for PCT Counterpart Application
No. PCT/US2011/067851, 3 pgs., (Sep. 25, 2012).

(Continued)

Primary Examiner — Cheng-Yuan Tseng
(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliot, LLP

(57) ABSTRACT

An asymmetric multiprocessor system (ASMP) may com-
prise computational cores implementing different instruction
set architectures and having different power requirements.
Program code executing on the ASMP is analyzed by a binary
analysis unit to determine what functions are called by the
program code and select which of the cores are to execute the
program code, or a code segment thereof. Selection may be
made to provide for native execution of the program code, to
minimize power consumption, and so forth. Control opera-
tions based on this selection may then be inserted into the
program code, forming instrumented program code. The
instrumented program code is then executed by the ASMP.

19 Claims, 10 Drawing Sheets

PROGRAW CODE
08

|7

CODE ANALYSIS DATA
204

I

‘CODE INSTRUMENTATION UNIT
128

PROGRAM CODE.
02

ControL
MicRO-0P

E

CoE.
SEGMENT
1

ConTroL
MICRO-OP

fp——
E

B

Goe

o2
H
g

MOVE to_BC
30402}

CoNTROL MicRO-0PS
204

WAKEUP_BC
20401}

™~ wakeup_sc
204(3}

| MOVE_to_sC
30414}

7
p

‘CodE 7 [nsrumenten
FEEDBACK. PROGRAM CODE
d28 302
N

N

US 9,348,594 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0244538 Al
2009/0222654 Al*

10/2008 Nair et al.

9/2009 Humccocvvernnine GOG6F 13/24
713/100

2010/0274551 Al

2011/0022817 Al

OTHER PUBLICATIONS

10/2010 Das et al.
1/2011 Gaster et al.

PCT Written Opinion of the International Searching Authority for
PCT Counterpart Application No. PCT/US2011/067851, 5 pgs.,
(Sep. 25, 2012).

PCT Notification concerning Transmittal of International Prelimi-
nary Report on Patentability (Chapter I of the Patent Cooperation
Treaty) for PCT Counterpart Application No. PCT/US2011/067851,
7 pgs., (Jul. 10, 2014).

PCT International Search Report for PCT Application No. PCT/
US2011/067654, 4 pgs., (Sep. 5, 2012).

PCT Written Opinion of the International Searching Authority for
PCT Application No. PCT/US2011/067654, 4 pgs., (Sep. 5, 2012).
PCT Notification concerning Transmittal of International Prelimi-
nary Report on Patentability (Chapter I of the Patent Cooperation
Treaty) for PCT Application No. PCT/US2011/067654, 6 pgs., (Jul.
10, 2014).

* cited by examiner

U.S. Patent May 24, 2016 Sheet 1 of 10 US 9,348,594 B2

(MEMORY] 100
102 /_
THREAD
104
PROGRAM CODE
106
\ [BINARY ANALYSIS UNIT |
‘ 122
[RemAP AND MIGRATE UNIT | - .
(RMU) REQUEST FOR CODE ANALYZER UNIT
CODE ANALYSIS |—p
108 124
- 120 \
[CODE INSTRUMENTATION |
UNIT
PROCESS PROFILES CODE 126
DATASTORE [FEEDBACK \ —
110 128
INSTRUMENTED CODE
STORAGE UNIT
L 111 -
— | |/
ISA FAULT
FIRST INSTRUCTION SECOND 130
SET ARCHITECTURE INSTRUCTION SET
(ISA) ARCHITECTURE
114 (ISA)
) 118
FIRST CORE
—»| (PROCESSOR) | SECOND
112(1) » CORE
| | 116(1)
g ISA
[] FEEDBACK
FIRST CORE ‘| SECOND 132
» (PROCESSOR) o ﬁORE
112(C) &
\ AN
7 N\
N\
r 4 N
N
R\
e
FIG. 1 %
134 —

U.S. Patent

PROGRAM CODE
106

May 24, 2016

Sheet 2 of 10

US 9,348,594 B2

/— 200

106

PROGRAM CODE

CODE
SEGMENT

202(1)

CODE
SEGMENT

202(2)

CODE
SEGMENT

202(N)

CODE ANALYZER UNIT

124

CODE ANALYSIS DATA

204
ISA USED ILP
206 208
FIRST HIGH
SECOND Low

Y

CODE ANALYSIS DATA

204

FIG. 2

U.S. Patent

May 24, 2016

PROGRAM CODE

106

Sheet 3 of 10

US 9,348,594 B2

/— 300

CODE ANALYSIS DATA
204

CODE INSTRUMENTATION UNIT

126

INSTRUMENTED
PROGRAM CODE
302

CONTROL
MICRO-OP

304(3)

CODE
SEGMENT

202(1)

CONTROL
MICRO-0OP

304(4)

CODE
SEGMENT

202(2)

CONTROL MICRO-OPS
304

4

CODE
FEEDBACK
128

Ve
Ve
Ve
INSTRUMENTED
PROGRAM CODE
302
AN

FIG. 3

U.S. Patent

CODE
FEEDBACK
128

Y

May 24, 2016

REMAP AND MIGRATE UNIT
108

INSTRUMENTED
ProGraMm CODE
302

CONTROL
MICRO-OP

304(3)

CoDE
SEGMENT

202(1)

CONTROL
MICRO-OP

304(4)

CODE
SEGMENT

202(2)

Sheet 4 of 10

US 9,348,594 B2

/- 400

WAKEUP_SC

. .|

MOVE_to_SC

FIRST INSTRUCTION SET
ARCHITECTURE (ISA)
114

FIRST CORE

112(1)

SECOND INSTRUCTION
SET ARCHITECTURE
(ISA)

118

SECOND

CORE

116(1)

U.S. Patent May 24, 2016 Sheet 5 of 10 US 9,348,594 B2

/— 500

RECEIVE AT A BINARY ANALYSIS UNIT PROGRAM CODE DESIGNATED FOR
EXECUTION ON ONE OR MORE OF A PLURALITY OF PROCESSORS HAVING
TWO OR MORE INSTRUCTION SET ARCHITECTURES
502

DETERMINE, AT THE BINARY ANALYSIS UNIT, WHAT INSTRUCTIONS ARE
CALLED BY ONE OR MORE CODE SEGMENTS WITHIN THE PROGRAM CODE
504

SELECT WHICH OF PLURALITY OF PROCESSORS TO ASSIGN THE ONE OR
MORE CODE SEGMENTS FOR EXECUTION, BASED AT LEAST IN PART ON
THE DETERMINATION
506

INSERT ONE OR MORE CONTROL MICRQO-OPERATIONS INTO THE PROGRAM
CODE AT LEAST PARTLY IN RESPONSE TO THE SELECTION, GENERATING
INSTRUMENTED PROGRAM CODE
508

TRANSMIT THE INSTRUMENTED PROGRAM CODE TO A REMAP AND
MIGRATION UNIT
510

FIG. 5

U.S. Patent May 24, 2016 Sheet 6 of 10 US 9,348,594 B2

/— 600

RECEIVE CHANGE TO A FIRST
PROCESSOR PERFORMANCE STATE SUCH DETERMINE UTILIZATION OF A FIRST
THAT THE PROCESSOR PERFORMANCE PROCESSOR BELOW A PRE-DETERMINED
STATE TRANSITIONS FROM A FIRST LEVEL THRESHOLD
TO A LOWER SECOND LEVEL 604
602
y

INITIATE AT A BINARY ANALYSIS UNIT A BINARY ANALYSIS TO DETERMINE
IF PROGRAM CODE FOR EXECUTION ON THE FIRST PROCESSOR HAVING A
FIRST INSTRUCTION SET ARCHITECTURE CAN BE MIGRATED TO EXECUTE
ON A SECOND PROCESSOR HAVING A SECOND INSTRUCTION SET
606

RECEIVE FROM THE BINARY ANALYSIS UNIT INSTRUMENTED PROGRAM
CODE COMPRISING ONE OR MORE CONTROL MICRO-OPERATIONS TO
MIGRATE THE PROGRAM CODE OR CODE SEGMENTS THEREOF TO THE
SECOND PROCESSOR
608

MIGRATE THE INSTRUMENTED PROGRAM CODE OR CODE SEGMENTS
THEREOF TO THE SECOND PROCESSOR BASED AT LEAST IN PART UPON
THE ONE OR MORE CONTROL MICRO-OPERATIONS
610

FIG. 6

US 9,348,594 B2

Sheet 7 of 10

May 24, 2016

U.S. Patent

004 l\

/. ©Old

ovZ
LINN AV1dSIQ

8¢/

1IN VING

ecl
1IN SISATYNY
AHVYNIG

/

oZ7
1INN NVES

2y
(s)1INN
YIATIONINOD
AHOWIN
AaLvHOIALN|

a0l
(nwY)
1IN JLVEDIN
ANV dVINTY

Z0Z LOIANNODHIALN|

YA
(s)1Nn
HITIOHINOD
sng

01z
1INN
INFOY WILSAS

Y

(S)LINN FHOVD AIHVHS

80Z

(N)¥0Z
(S)LINN
IHOVD

(NJ90Z

340D

(Pv0Z
(s)1INN
IHOVD

(17907

340D

707 H0SS3004d

Vel

d0SS300dd O3dIA

\

(442

d0SS300dd o1dany

02z

d0OSS300Hd FOVN|

8L
SOIHdYHD)
d31LVHOAIN|

917

(s)doss3aooud viaan

U.S. Patent May 24, 2016 Sheet 8 of 10 US 9,348,594 B2

/— 800

CPU GPU
802 804

IMAGE PROCESSOR VIDEO PROCESSOR

806 808
SPI
USB UART SDIO DIsPLAY HDMI
810 812 816 818
814
MIPI FLASH DDR SECURITY 125
820 822 824 ENGINE 12C
I I . 826 828

FIG. 8

U.S. Patent May 24, 2016 Sheet 9 of 10 US 9,348,594 B2

/— 900

CORE 1

¥
¢

902

FIG. 9

U.S. Patent May 24, 2016 Sheet 10 of 10 US 9,348,594 B2

1000
CORE 2 CORE 3 CORE 4
CORE 1 { CORE 5 \
\
CORE X CORE 7 CORE 6 1002
FIG. 10
] 1100

CORE 1 CORE 2

i

y L

1102
CORE X CORE 3

FIG. 11

US 9,348,594 B2

1
CORE SWITCHING ACCELERATION IN
ASYMMETRIC MULTIPROCESSOR SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. §371 of International Application No.
PCT/US2011/067851, filed Dec. 29, 2011, entitled CORE
SWITCHING ACCELERATION IN ASYMMETRIC MUL-
TIPROCESSOR SYSTEM.

TECHNICAL FIELD

The invention described herein relates to the field of micro-
processor architecture. More particularly, the invention
relates to core switching in asymmetric multiprocessor sys-
tems.

BACKGROUND

An asymmetric multiprocessor system (ASMP) combines
computational cores of different capabilities or specifica-
tions. For example, a first “big” core may contain a different
arrangement of logic elements than a second “small” core.
Threads executing program code on the ASMP would benefit
from operating-system transparent core migration of program
code between the different cores.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is set forth with reference to the
accompanying drawing figures. In the figures, the left-most
digit(s) of a reference number identifies the figure in which
the reference number first appears. The use of the same ref-
erence numbers in different figures indicates similar or iden-
tical items or features.

FIG. 1 illustrates a portion of an architecture of an asym-
metric multiprocessor system (ASMP) providing for migra-
tion of program code between cores using a binary analysis
unit comprising a code analyzer unit and a code instrumen-
tation unit.

FIG. 2 illustrates analysis of the program code by the code
analyzer unit to generate code analysis data.

FIG. 3 illustrates the code instrumentation unit inserting
control micro-operations into the program code to form
instrumented program code at least partly in response to the
code analysis data.

FIG. 4 illustrates a remap and migrate unit migrating pro-
gram code between cores according to the control micro-
operations of the instrumented program code.

FIG. 5 is an illustrative process of generating instrumented
program code.

FIG. 6 is an illustrative process of performing a binary
analysis for core migration.

FIG. 7 is a block diagram of an illustrative system to
perform migration of program code between asymmetric
cores.

FIG. 8 is a block diagram of a processor according to one
embodiment.

FIG. 9 is a schematic diagram of an illustrative asymmetric
multi-core processing unit that uses an interconnect arranged
as a ring structure.

FIG. 10 is a schematic diagram of an illustrative asymmet-
ric multi-core processing unit that uses an interconnect
arranged as a mesh.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 11 is a schematic diagram of an illustrative asymmet-
ric multi-core processing unit that uses an interconnect
arranged in a peer-to-peer configuration.

DETAILED DESCRIPTION

Architecture

FIG. 1 illustrates a portion of an architecture 100 of an
asymmetric multiprocessor system (ASMP). As described
herein, this architecture provides for migration of program
code between cores using a binary analysis unit comprising a
code analyzer unit and a code instrumentation unit.

A memory 102 comprises computer-readable storage
media (“CRSM”) and may be any available physical media
accessible by a processing core or other device to implement
the instructions stored thereon or store data within. The
memory 102 may comprise a plurality of logic elements
having electrical components including transistors, capaci-
tors, resistors, inductors, memristors, and so forth. The
memory 102 may include, but is not limited to, random access
memory (“RAM”), read-only memory (“ROM?”), electrically
erasable programmable read-only memory (“EEPROM”),
flash memory, magnetic storage devices, and so forth.

Within the memory 102 may be stored an operating system
(not shown). The operating system is configured to manage
hardware and services within the architecture 100 for the
benefit of the operating system (“OS”") and one or more appli-
cations. During execution of the OS and/or one or more
applications, one or more threads 104 are generated for
execution by a core or other processor. Each thread 104 com-
prises program code 106.

A remap and migrate unit 108 comprises logic or circuitry
which receives the program code 106 and migrates it across
an asymmetric plurality of cores for execution. The asymme-
try of the architecture results from two or more cores having
different instruction set architectures, different logical ele-
ments, different physical construction, and so forth. As shown
here, the remap and migrate unit 108 may comprise memory
to store process profiles, forming a process profiles datastore
110. The process profiles datastore 110 contains data about
the threads 104 and their execution. The RMU 108 may also
comprise an instrumented code storage unit to store instru-
mented program code for execution. The instrumented pro-
gram code and generation thereof is discussed below.

Coupled to the remap and migrate unit 108 are one or more
first cores (or processors) 112(1), 112(2), . . ., 112(C). These
first cores 112 implement a first instruction set architecture
(ISA) 114. Also coupled to the remap and migrate unit 108 are
one or more second cores 116(1),116(2), ..., 116(S). As used
herein, letters in parenthesis such as (C) and (S) are positive
integers greater than or equal to one. These second cores 116
implement a second ISA 118. In some implementations the
quantity of the first cores 112 and the second cores 118 may
be asymmetrical. For example, there may be a single first core
112(1) and three second cores 116(1), 116(2), and 116(3).
While two instruction set architectures are depicted, it is
understood that more ISAs may be present in the architecture
100. The ISAs in the ASMP architecture 100 may differ from
one another, but one ISA may be a subset of another. For
example, the second ISA 118 may be a subset of the first [SA
116.

In some implementations the first cores 112 and the second
cores 116 may be coupled to one another using a bus or
interconnect. The interconnect may be arranged as a mesh
interconnect, a shared interconnect, a peer-to-peer (P2P)
interconnect, a ring interconnect, and so forth. The first cores
112 and the second cores 116 may be configured to share

US 9,348,594 B2

3

cache memory or other logic. As used herein, cores include,
but are not limited to, central processing units (CPUs), graph-
ics processing units (GPUs), floating point units (FPUs) and
so forth.

The remap and migrate unit 108 may receive the program
code 106 and issue a request for code analysis 120 to a binary
analysis unit 122. The binary analysis unit 122 is configured
to provide a binary analysis of the program code 106. This
binary analysis determines functions of the program code
106. This determination may be used to select which of the
cores to execute the program code or portions thereof upon
106. The binary analysis unit 122 may comprise a code ana-
lyzer unit 124 which comprises logic to assess what instruc-
tion set architecture the program code 106 or a portion thereof
natively uses. The code analyzer unit 122 and code analysis is
discussed below in more detail with regards to FIG. 2.

A code instrumentation unit 126 comprises logic to add
control micro-operations into the program code 106, forming
instrumented program code which may be stored in the
instrumented code storage unit 111. These control micro-
operations are added at least partly in response to output from
the binary analysis unit 122. Once stored, the instrumented
code may be executed on the first core 112 or the second core
116. Instrumentation may be processed by the RMU 108 to
determine which core to migrate the code to. The code instru-
mentation unit 126 and the insertion of micro-operations is
discussed in more detail below with regards to FIG. 3.

The binary analysis unit 122 provides code feedback 128 to
the remap and migrate unit 108. This code feedback 128 may
comprise instrumented program code generated by the code
instrumentation unit 126. The remap and migrate unit 108
may then use the control micro-operations in the instru-
mented program code to control core switching and opera-
tions related thereto during execution of the thread.

The remap and migrate unit 108 may receive ISA faults 130
from the second cores 116. For example, when the program
code 106 contains an instruction which is non-native to the
second ISA 118 as implemented by the second core 116, the
ISA fault 130 provides notice to the remap and migrate unit
108 of this failure. The remap and migrate unit 108 may also
receive ISA feedback 132 from the cores, such as the first
cores 112. The ISA feedback 132 may comprise data about
instructions used during execution, processor status, and so
forth. The remap and migrate unit 108 may use the ISA fault
130 and the ISA feedback 132 to modify migration of the
program code 106 across the cores.

The first cores 112 and the second cores 114 may use
differing amounts of power during execution of the program
code 106. For example, the first cores 112 may individually
consume a first maximum power during normal operation at
a maximum frequency and voltage within design specifica-
tions for these cores. The first cores 112 may be configured to
enter various lower power states including low power or
standby states during which the first cores 112 consume a first
minimum power, such as zero when off. In contrast, the
second cores 112 may individually consume a second maxi-
mum power during normal operation at a maximum fre-
quency and voltage within design specification for these
cores. The second maximum power may be less than the first
maximum power. This may occur for many reasons, includ-
ing the second cores 116 having fewer logic elements than the
first cores 112, different semiconductor construction, and so
forth. As shown here, a graph depicts maximum power usage
134 of'the first core 112 compared to maximum power usage
136 of the second core 116. The power usage 134 is greater
than the power usage 136.

20

25

30

35

40

45

55

4

The remap and migration unit 108 may use the code feed-
back 128 to migrate program code 108 between the first cores
112 and the second cores 116 to reduce power consumption,
increase overall utilization of compute resources, provide for
native execution of instructions, and so forth. In one imple-
mentation to minimize power consumption, the program code
106 may be migrated to the second core 116 having lower
power usage 136 for execution with only portions of the
program code 106 calling for instructions native on the first
ISA 114 being executed on the first core 112. As a result, most
execution occurs on the first second core 116, which con-
sumes less electrical power. By using the instrumented pro-
gram code, the remap and migrate unit 108 may warmup, or
restore to a specified operational state, the first core 112 such
that core switching occurs seamlessly and without a signifi-
cant impact on performance.

In some implementations, such as in systems-on-a-chip,
several of the elements described in FIG. 1 may be disposed
on a single die. For example, the first cores 112, the second
cores 116, the memory 102, and so forth may be disposed on
the same die.

FIG. 2 illustrates analysis 200 of the program code 106 by
the code analyzer unit 124 in the binary analysis unit 122. As
indicated here, the code analyzer unit 124 receives the pro-
gram code 106, or a portion thereof, of the thread 104. The
program code 106 comprises one or more code segments
202(1), 202(2), . . ., 202(N). The code segments 202 may be
of'varying length. The length may be determined by the code
analyzer unit 124. The program code 106 may be distributed
into the code segments based upon functions called, instruc-
tion set used, instruction complexity, and so forth.

The code analyzer unit 124 comprises logic elements to
generate code analysis data 204 from the program code 106.
This code analysis data 204 may comprise one or more char-
acteristics about the program code 106 and the code segments
202 therein. The characteristics of the code analysis data 204
may comprise an [ISA used 206, indication of instruction level
parallelism (ILP) 208, and so forth. The ISA used 206 char-
acteristic indicates a particular instruction set architecture
within which the code segment 202 executes natively. For
example, the code segment 202(1) may call for an instruction
which is natively available on the first core 112 without binary
translation but is available through emulation on the second
core 116 with binary translation. Thus, in this case the code
segment 202(1) may be executed on either processor, but may
execute faster on the first core 112 where execution is native
without binary translation.

In other implementations, other characteristics may be
included in the code analysis data. For example, the number
of cycles for a given core to execute a particular instruction
may be determined or estimated.

The code analyzer unit 124 may then output the code
analysis data 204. The code analysis data 204 may include the
program code 106, as well as other data, such as the ISA used,
ILP, estimated cycles for execution, and so forth. In addition,
the data 204 may include information about the ISA faults
130, the ISA feedback 132, or both.

FIG. 3 illustrates the code instrumentation unit 126 insert-
ing 300 instructions into the program code 106. These
instructions may comprise macroinstructions, micro-opera-
tions, and so forth. While the following description uses the
term micro-operations or micro-op, it is understood that in
other architectures other instructions may be used.

The code instrumentation unit 126 receives the code analy-
sis data 204 and the program code 106 and generates instru-
mented program code 302. The instrumented program code
302 comprises the program code 106 with control micro-

US 9,348,594 B2

5

operations (or micro-ops) 304 inserted therein. The control
micro-ops 304 may include, but are not limited to, instruc-
tions for migrating threads between processors, changing
operational states of a particular processor from one power
state to another, and so forth. For example, as depicted here
for sake of illustration and not by way of limitation, the
control micro-ops 304 may comprise a WAKEUP_BC 304(1)
micro-op, a MOVE_to_BC micro-op 304(2), a WAKE-
UP_SC micro-op 304(3), a MOVE_to_SC micro-op 304(4),
and so forth. The WAKEUP_BC 304(1) when issued by the
remap and migrate unit 108 brings the first core 112 from a
lower power state to a higher power state. For example, the
WAKEUP_BC 304(1) transitions the first core 112 from a
low power standby state to full power operational state ready
for execution of instructions.

The MOVE_to_BC micro-op 304(2) initiates a core migra-
tion of the thread 104 and the associated program code 106 or
code segments thereof 202 from one core executing the
instructions such as the second core 116 to the first core 112.

The WAKEUP_SC micro-op 304(3) when issued by the
remap and migrate unit 108 brings the second core 116 from
a lower power state to a higher power state. For example, the
WAKEUP_SC 304(3) transitions the second core 116 from a
low power standby state to full power operational state ready
for execution of instructions. The MOVE_to_SC micro-op
304(4) initiates a core migration of the thread 104 and the
associated program code 106 or code segments thereof 202
from the core executing the instrumented code, such as the
first core 112, to the second core 116. To enable a correct
returning point back to the first core 112, the code instrumen-
tation unit 126 may insert the WAKEUP_BC 304(1) and
MOVE_to_BC 304(2) micro-ops to initiate the core switch
and state migration back to the first core 112. As depicted
here, to minimize or hide the latency of core migration, an
appropriate distance “D” is provided between the WAKE-
UP_BC 304(1) and MOVE_to_BC 304(2) micro-ops. The
distance may be expressed at time, number of instructions,
and so forth. This is discussed in more detail below.

As depicted here, the instrumented program code 302 con-
tains code segments 202 and control micro-ops 304 in the
following sequence: the control micro-op 304(3), the code
segment 202(1), the control micro-op 304(4), the code seg-
ment 202(2). Other control micro-ops 304, code segments
202, and so forth may follow but are not shown for ease of
illustration and not by way of limitation. The control micro-
ops 304 may be placed immediately prior to code segments
202 associated therewith, or may be inserted at a distance “D”
before or after. For example, as shown here, the code segment
202(1) may be slated for execution on the first core 112 while
the code segment 202(2) may be slated for execution on the
second core 116. The control micro-op 304(3) is placed
before the code segment 202(1) at distance “D” from the
control micro-op 304(4) to provide time for the second core
116 to reach a desired operating state before migration. For
example, the time interval provided by the distance “D” may
allow time for the second core 116 to settle prior to beginning
execution of the code segment 202(2). In other implementa-
tions the distance “D” may be omitted. For example, the
WAKEUP_SC control micro-op 304(3) may execute imme-
diately before the MOVE_to_SC control micro-op 304(4).

The code instrumentation unit 126 generates instrumented
program code 302 to meet one or more operational param-
eters. These operational parameters may include minimizing
overall power consumption, minimizing heat dissipation,
minimizing overall execution time, maximizing core utiliza-
tion, and so forth. In one implementation, the control micro-
operations 304 such as the MOVE_to_SC 304(4) may be

15

20

30

35

40

45

6

inserted when utilization of the first core 112 is below a
pre-determined threshold. This low level of utilization may
thus indicate the second core 116 offers sufficient resources to
provide the same overall level of performance, but at lower
power consumption as compared to the first core 112.

In another implementation, the control micro-operations
304 such as MOVE_to_BC 304(2) may be inserted when the
code segment 202 calls for a function native to the first
instruction set architecture 114 and non-native to the second
instruction set architecture 118. For example, when the code
instrumentation unit 126 determines a code segment 202 or
other code region has a low instruction level parallelism (ILP)
and does not utilize the first ISA 114, the control micro-op
304(4) may be inserted to move that code segment 202 to the
second core 116 for execution. Similarly, when the code
segment 202 which intensively uses the first ISA 114 is deter-
mined, the control micro-op 304(2) may be inserted to move
that code to the first core 112 for execution.

These code modifications may be performed in special
translation cache memory storage coupled to or within the
code instrumentation unit 126. By introducing these control
micro-ops 304 into the program code 106 to form instru-
mented program code 304 migration time is significantly
reduced. The placement of the wakeup micro-operations such
as 304(1) and 304(3) which allows a given core to be pre-
warmed and ready for execution before receiving the code
segment 202 for execution. As a result, latency is significantly
reduced or eliminated. This is illustrated below in more detail
with regards to FIG. 4.

While the instrumented program code 302 is shown in a
single linear arrangement, in some implementations various
control micro-ops 304, code segments 202, and so forth may
be executed concurrently. For example, when the WAKE-
UP_SC 304(3) micro-op is inserted at a beginning of the code
segment 202(2), powering up of the second core 116 and the
state migration to the second core 116 from the first core 112
may occur in parallel with the code segment 202(2)’s execu-
tion on the first core 112 until the first core 112 executes the
MOVE_to_SC 304(4) micro-op.

In some implementations insertion of micro-ops such as
MOVE_to_BC 304(2) and MOVE_to_SC 304(4) may be
implicit or automatically added such that these micro-ops are
injected into a pipeline, such as after a pre-defined number of
instructions following the wakeup micro-operations such as
WAKEUP_BC 304(1) or WAKEUP_SC 304(3). This inser-
tion may be made by the code instrumentation unit 126,
remap and migrate unit 108, or other hardware in the ASMP
architecture 100.

The code instrumentation unit 126 generates code feed-
back 128. This code feedback 128 may comprise the instru-
mented program code 302, the code analysis data 204, as well
as other instructions, metrics, and so forth. The instrumented
program code 302 may be stored in the instrumented code
storage unit 111. The instrumented code storage unit 111 may
comprise an address lookup mechanism, such that during
program code execution the instrumented code 302 is
executed instead of the original program code 106.

FIG. 4 illustrates the remap and migrate unit 108 migrating
400 program code 106 between cores according to the control
micro-operations. As mentioned above, the remap and
migrate unit 108 may initiate the binary analysis by issuing a
request for code analysis 120. In some implementations, this
request 120 may be initiated at least in part by looking for
changes in performance or P-state. The P-state of a core
indicates an operational level of performance, such as may be
defined by a particular combination of frequency and operat-
ing voltage of the core. For example, a high P-state may

US 9,348,594 B2

7

involve the core executing at its maximum design frequency
and voltage. In some implementations, an operating system
executing on the ASMP 100 may transition the P-state from a
high value to a low one. When this transition is received, the
remap and migrate unit 108 may initiate the binary analysis to
distribute code segments 202 across the first core 112 and the
second core 116 such that power consumption is minimized.
As described above, the binary analysis unit 122 may deter-
mine when the program code 106 or portions thereof may be
migrated for execution on the second core 116.

The migration and remap unit 108 may also initiate the
binary analysis unit 122 to predict future usage of a particular
instruction by assessing control registers programmed by the
operating system (OS), a virtual machine manager (VMM),
and so forth. In particular, the XINIT tracker may be used to
determine when the thread 104 of an application has ever used
AVX registers. The binary analysis unit 122 may also utilize
a performance monitoring unit (PMU) counter to count a
number of instructions executed which are supported in the
first ISA 114, the second ISA 118, and so forth. For example,
as instructions in the first ISA 114 are called, the PMU
counter may be incremented. In some implementations, the
remap and migrate unit 108 may access or otherwise maintain
performance or usage data.

As shown here, the remap and migrate unit (RMU) 108 has
received the code feedback 128 comprising the instrumented
program 302 as stored in the instrumented code storage unit
111. During execution, the instrumented program code 302 is
executed instead of the original program code 106. Using the
control-microops 304 therein, the remap and migrate unit 108
may now execute the thread 104 while providing migration of
the thread 104 between multiple cores in the ASMP. This
migration is transparent to the operating system. The WAKE-
UP_SC 304(3) control micro-op is issued to the second core
116(1), pre-warming it for execution of the code segment
202(2) to follow.

The RMU 108 executes the code segment 202(1) on the
first core 112(1). Next, the MOVE_to_SC 304(4) control
micro-op initiates the migration of the thread 104 from the
first core 112 to the second core 116. The first core 112
executes this command, and migrates state information to the
second core 116(1), now ready, for execution. The next code
segment 202(2) is then sent to the second core 116(1) for
execution. In some implementations, the first core 112(1),
now unused, may be set to a reduced power state.
Illustrative Processes

The processes described in this disclosure may be imple-
mented by the devices described herein, or by other devices.
These processes are illustrated as a collection of blocks in a
logical flow graph. Some of the blocks represent operations
that can be implemented in hardware, software, or a combi-
nation thereof. In the context of software, the blocks represent
computer-executable instructions stored on one or more com-
puter-readable storage media that, when executed by one or
more processors, perform the recited operations. Generally,
computer-executable instructions include routines, pro-
grams, objects, components, data structures, and the like that
perform particular functions or implement particular abstract
data types. In the context of hardware, the blocks represent
arrangements of circuitry configured to provide the recited
operations. The order in which the operations are described is
not intended to be construed as a limitation, and any number
of the described blocks can be combined in any order or in
parallel to implement the processes.

FIG. 5 is an illustrative process 500 of generating the
instrumented program code 302. This process may be per-
formed by the binary analysis unit 122 in some implementa-

10

15

20

25

30

35

40

45

50

55

60

65

8

tions. At 502, the program code 106 is received at the binary
analysis unit 122. This program code 106 is designated for
execution on one or more of a plurality of processors such as
the first core 112 and the second core 116, wherein the plu-
rality of processors have two or more instruction set architec-
tures. For example, the first core 112 implements the first ISA
114 and the second core 116 implements the second ISA 118.

At 504, instructions called by the one or more code seg-
ments 202 within the program code 106 are determined. For
example, the code analyzer unit 124 may determine that the
code segment 202(1) uses instructions native to the first [ISA
114.

At 506, one or more of the plurality of processors are
selected to assign the one or more code segments 202 to for
execution. In some implementations, this selection may be
based at least in part on the determination of the instructions
called. In other implementations, the selection may be based
on other code analysis data 204, pre-determined, and so forth.

At 508, one or more control micro-ops 304 are inserted into
the program code 106 at least partly in response to the selec-
tion, generating the instrumented program code 302. At 510,
the instrumented program code 302 may then be transmitted
from the instrumented code storage unit 111 to the RMU 118
for core migration and execution of the thread 104.

FIG. 6 is an illustrative process 600 of performing a binary
analysis for core migration. In some implementations, this
process may be performed by the RMU 118.

Binary analysis of the program code 106 associated with
the thread 102 may be initiated in several ways. For illustra-
tion and not by way of limitation, two are illustrated here.

In one implementation, at 602, a change to a first processor
performance state (or P-state) such that the processor perfor-
mance state is to transition from a first level to a lower second
level is received. For example, the OS may request a change
in the P-state from a high power to a low power state. In
another implementation, at 604 utilization of the first proces-
sor is determined to be below a pre-determined threshold. For
example, the first core 112 may drop below a pre-determined
utilization threshold, indicating the first core 112 is underuti-
lized, thus consuming power unnecessarily compared to
execution on the second core 116.

At 606, binary analysis of the program code 106 is initiated
at the binary analysis unit 122. The binary analysis deter-
mines if the program code 106 for execution on the first
processor having a first instruction set architecture can be
migrated to execute on a second processor having a second
instruction set. For example, code segment 202(9) may be
executable either natively or with binary translation using
either the first ISA 114 of the first core 112 or the second ISA
118 of the second core 116.

At 608, receive the instrumented program code 302 com-
prising one or more control micro-operations 304 to migrate
the program code 106 or the code segments 202 thereofto the
second processor. For example, the instrumented program
code 302 may comprise the MOVE_to_SC micro-op 304(4)
inserted by the binary analysis module 122 for execution prior
to the code segment 202(9).

At 610, the instrumented program code 302 migrates the
program code 106 or one or more code segments 202 thereof
to the second processor based at least in part on the one or
more control micro-ops 304. Continuing the example, the
RMU 118 may execute the MOVE_to_SC micro-op 304(4)
on the first core 112 and migrate the thread 104 to the second
core 116 such that the code segment 202(9) executes on the
second core 116.

FIG. 7 is a block diagram of an illustrative system 700 to
perform migration of program code between asymmetric

US 9,348,594 B2

9

cores. This system may be implemented as a system-on-a-
chip (SoC). An interconnect unit(s) 702 is coupled to: one or
more processors 704 which includes a set of one or more
cores 706(1)-(N) and shared cache unit(s) 708; a system agent
unit 710; a bus controller unit(s) 712; an integrated memory
controller unit(s) 714; a set or one or more media processors
716 which may include integrated graphics logic 718, an
image processor 720 for providing still and/or video camera
functionality, an audio processor 722 for providing hardware
audio acceleration, and a video processor 724 for providing
video encode/decode acceleration; an static random access
memory (SRAM) unit 726; a direct memory access (DMA)
unit 728; and a display unit 740 for coupling to one or more
external displays. In one implementation the RMU 108, the
binary analysis unit 122, or both may couple to the cores 706
via the interconnect 702. In another implementation, the
RMU 108, the binary analysis unit 122, or both may couple to
the cores 706 via another interconnect between the cores.

The processor(s) 704 may comprise one or more cores
706(1),706(2), . . ., 706(N). These cores 706 may comprise
the first cores 112(1)-112(C), the second cores 116(1)-116
(S), and so forth. In some implementations, the processors
704 may comprise a single type of core such as the first core
112, while in other implementations, the processors 704 may
comprise two or more distinct types of cores, such as the first
cores 112, the second cores 116, and so forth. Each core may
include an instance of logic to perform various tasks for that
respective core. The logic may include one or more of dedi-
cated circuits, logic units, microcode, or the like.

The set of shared cache units 708 may include one or more
mid-level caches, such as level 2 (L2), level 3 (1.3), level 4
(L4), or other levels of cache, a last level cache (LL.C), and/or
combinations thereof. The system agent unit 710 includes
those components coordinating and operating cores 706(1)-
(N). The system agent unit 710 may include for example a
power control unit (PCU) and a display unit. The PCU may be
or include logic and components needed for regulating the
power state of the cores 706(1)-(N) and the integrated graph-
ics logic 718. The display unit is for driving one or more
externally connected displays.

FIG. 8 illustrates a processor containing a central process-
ing unit (CPU) and a graphics processing unit (GPU), which
may perform instructions for handling core switching as
described herein. In one embodiment, an instruction to per-
form operations according to at least one embodiment could
be performed by the CPU. In another embodiment, the
instruction could be performed by the GPU. In still another
embodiment, the instruction may be performed through a
combination of operations performed by the GPU and the
CPU. For example, in one embodiment, an instruction in
accordance with one embodiment may be received and
decoded for execution on the GPU. However, one or more
operations within the decoded instruction may be performed
by a CPU and the result returned to the GPU for final retire-
ment of the instruction. Conversely, in some embodiments,
the CPU may act as the primary processor and the GPU as the
CO-Processor.

In some embodiments, instructions that benefit from
highly parallel, throughput processors may be performed by
the GPU, while instructions that benefit from the performance
of'processors that benefit from deeply pipelined architectures
may be performed by the CPU. For example, graphics, sci-
entific applications, financial applications and other parallel
workloads may benefit from the performance of the GPU and
be executed accordingly, whereas more sequential applica-
tions, such as operating system kernel or application code
may be better suited for the CPU.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 8 depicts processor 800 which comprises a CPU 802,
GPU 804, image processor 806, video processor 808, USB
controller 810, UART controller 812, SPI/SDIO controller
814, display device 816, memory interface controller 818,
MIPI controller 820, flash memory controller 822, dual data
rate (DDR) controller 824, security engine 826, and 12S/12C
controller 828. Other logic and circuits may be included in the
processor of FI1G. 8, including more CPUs or GPUs and other
peripheral interface controllers.

The processor 800 may comprise one or more cores which
are similar or distinct cores. For example, the processor 800
may include one or more first cores 112(1)-112(C), second
cores 116(1)-116(S), and so forth. In some implementations,
the processor 800 may comprise a single type of core such as
the first core 112, while in other implementations, the proces-
sors may comprise two or more distinct types of cores, such as
the first cores 112, the second cores 116, and so forth.

One or more aspects of at least one embodiment may be
implemented by representative data stored on a machine-
readable medium which represents various logic within the
processor, which when read by a machine causes the machine
to fabricate logic to perform the techniques described herein.
Such representations, known as “IP cores” may be stored on
atangible, machine readable medium (“tape’) and supplied to
various customers or manufacturing facilities to load into the
fabrication machines that actually make the logic or proces-
sor. For example, IP cores, such as the Cortex™ family of
processors developed by ARM Holdings, [.td. and Loongson
IP cores developed the Institute of Computing Technology
(ICT) ofthe Chinese Academy of Sciences may be licensed or
sold to various customers or licensees, such as Texas Instru-
ments, Qualcomm, Apple, or Samsung and implemented in
processors produced by these customers or licensees.

FIG. 9 is a schematic diagram of an illustrative asymmetric
multi-core processing unit 900 that uses an interconnect
arranged as a ring structure 902. The ring structure 802 may
accommodate an exchange of data between cores 1, 2, 3, 4,
5, ..., X. As described above, the cores may include one or
more of the first cores 112 and one or more of the second cores
116. In some implementations, a plurality of the processors
may be coupled in the ring structure as shown here to accom-
modate an exchange of data between the processors.

FIG. 10 is a schematic diagram of an illustrative asymmet-
ric multi-core processing unit 1000 that uses an interconnect
arranged as a mesh 1002. The mesh 1002 may accommodate
an exchange of data between a core 1 and other cores 2, 3, 4,
5,6,7,...,X which are coupled thereto or between any
combinations of the cores. As described above, in some
implementations, a plurality of the processors may be
coupled in the mesh structure as shown here to accommodate
an exchange of data between the processors.

FIG. 11 is a schematic diagram of an illustrative asymmet-
ric multi-core processing unit 1100 that uses an interconnect
arranged in a peer-to-peer configuration 1102. The peer-to-
peer configuration 1102 may accommodate an exchange of
data between any combinations of the cores. As described
above, in some implementations, a plurality of the processors
may be coupled in the peer-to-peer structure as shown here to
accommodate an exchange of data between the processors.

CONCLUSION

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and

US 9,348,594 B2

11

acts are disclosed as illustrative forms of implementing the
claims. For example, the methodological acts need not be
performed in the order or combinations described herein, and
may be performed in any combination of one or more acts.
What is claimed is:
1. A device comprising:
a code analyzer unit to determine one or more instructions
called by a code segment;
a code instrumentation unit to
select a subset of a plurality of processing cores to
execute the code segment, the plurality of processing
cores comprising a first core to execute a first instruc-
tion set architecture and a second core to execute a
second instruction set architecture, the selection
being based at least in part on the one or more code
segments being natively executable in the first
instruction set architecture or the second instruction
set architecture, and

form instrumented program code by modifying the code
segment to include one or more control operations
based on the selected subset of the plurality of pro-
cessing cores, the one or more control operations
comprising a core wakeup operation before a move
program code operation to initiate migration of the
code segment to the first core or the second core.
2. The device of claim 1, wherein the one or more control
operations are to pre-warm the particular core and make the
particular core ready for execution.
3. The device of claim 1, wherein the plurality of process-
ing cores comprise an asymmetric multiprocessor system.
4. A processor comprising:
a first core to operate at a first maximum power consump-
tion rate and a second core to operate at a second maxi-
mum power consumption rate which is less than the first
maximum power consumption rate, wherein the first
core is to implement a first instruction set architecture
and the second core is to implement a second instruction
set architecture; and
binary analysis logic to:
determine what instructions are called by one or more
code segments within program code;

select which of the first core or the second core to assign
the one or more code segments for execution, the
selection based at leastin part on the one or more code
segments being natively executable in the first
instruction set architecture or the second instruction
set architecture; and

insert, at least partly in response to the selection, one or
more control operations into the program code based
at least in part on the selection to form instrumented
program code, the insertion comprising placing a core
wakeup operation before a move program code to
initiate migration of the code segment to the first core
or the second core.

5. The processor of claim 4, the one or more control opera-
tions comprising commands to:

wake up the first core;

wakeup the second core;

move program code to the first core; and

move program code to the second core.

6. The processor of claim 4, further comprising remap and
migrate logic to migrate one or more code segments of the

10

15

20

25

30

35

40

45

50

55

60

12

instrumented program code to the first core or the second core
for execution based at least in part on the one or more control
operations.

7. The processor of claim 4, the logic to select which of the
first core or the second core to assign the one or more code
segments for execution being based at least in part upon
receiving a change to a performance state of the first core.

8. The processor of claim 7, wherein the change in the
performance state comprises a transition from a first state to a
second state lower than the first.

9. The processor of claim 4, wherein the first core and the
second core comprise an asymmetric multiprocessor system.

10. The processor of claim 9, wherein the binary analysis
logic further to migrate the one or more code segments
between cores of the asymmetric multiprocessor system.

11. The processor of claim 4, the logic to select which of the
first core or the second core to assign the one or more code
segments for execution being based at least in part upon
power consumption of the first core or the second core to
execute the one or more code segments.

12. A method comprising:

receiving, into a memory, program code for execution on a

first processor or a second processor, wherein the first
processor to accept a first instruction set architecture and
the second processor to accept a second instruction set
architecture;

detecting functions called by the program code stored in

the memory;

selecting one or more portions of the program code to

execute on a particular processor based at least in part
upon the functions called, the selecting further select the
particular processor such that the detected function
called executes natively; and

inserting one or more control operations into the program

code stored in the memory to form instrumented pro-
gram code at least partly in response to the selection, the
inserting further to place a processor wakeup operation
before a move program code operation in the instru-
mented program code.

13. The method of claim 12, wherein the one or more
control operations wake the first processor or the second
processor from a low power state.

14. The method of claim 12, wherein the one or more
control operations migrate the program code between the first
processor and the second processor.

15. The method of claim 12, wherein the processor wakeup
operation before a move program code operation in the instru-
mented program code to pre-warm the particular processor
and make the particular processor ready for execution.

16. The method of claim 12, the inserting comprising add-
ing a processor wakeup operation to the program code.

17. The method of claim 16, the inserting further compris-
ing adding a program code move operation after a pre-deter-
mined number of executed instructions.

18. The method of claim 12,

the selecting further comprising selecting the particular

processor such that the program code executes with
instruction-level parallelism.

19. The method of claim 12, the selecting being based at
least in part on power consumption of the functions called if
executed by the first processor or the second processor.

#* #* #* #* #*

